
529

An Agent-Based Approach to Component Management
David Lillis

University College Dublin
Belfield, Dublin 4

Ireland
+353 1 716 2908

David.Lillis@ucd.ie

Rem Collier
University College Dublin

Belfield, Dublin 4
Ireland

+353 1 716 2465

Rem.Collier@ucd.ie

Mauro Dragone
CLARITY: The Centre for
Sensor Web Technologies
University College Dublin

Belfield, Dublin 4
Ireland

+353 1 716 2491
Mauro.Dragone@ucd.ie

G.M.P. O Hare
CLARITY: The Centre for Sensor

Web Technologies
University College Dublin

Belfield, Dublin 4
Ireland

+353 1 716 2472
Gregory.Ohare@ucd.ie

ABSTRACT
This paper details the implementation of a software framework

that aids the development of distributed and self-configurable

software systems. This framework is an instance of a novel

integration strategy called SoSAA (SOcially Situated Agent

Architecture), which combines Component-Based Software

Engineering [15] and Agent-Oriented Software Engineering,

drawing its inspiration from hybrid agent control architectures.

The framework defines a complete construction process by

enhancing a simple component-based framework with reasoning

and self-awareness capabilities through a standardized interface.

The capabilities of the resulting framework are demonstrated

through its application to a non-trivial Multi Agent System

(MAS). The system in question is a pre-existing Information

Retrieval (IR) system that has not previously taken advantage of

CBSE principles. In this paper we contrast these two systems so

as to highlight the benefits of using this new hybrid approach. We

also outline how component-based elements may be integrated

into the Agent Factory agent-oriented application framework.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

– Multiagent systems.

General Terms

Performance, Design, Experimentation.

Keywords
Distributed Systems, Methodologies, Agent-oriented Software
Engineering.

1. Introduction
Modern distributed computing systems require powerful software

frameworks to ease their development and manage their

complexity. Independently from their specific nature, these

systems share the need for an open and dynamic approach to

system integration, as the type and the availability of their

constituent parts are not stable but may change at run-time. This

may occur, for example, due to changing requirements, interaction

with heterogeneous/legacy systems, or network disruptions. It is

thus also important to be able to change communication path-

ways at run-time while satisfying other run-time constrains that

are dictated, for instance, by CPU and memory limitations.

The concepts that underpin component frameworka have become

well-established in Component-Based Software Engineering

(CBSE) [15]. Instead, researchers in this area have begun to focus

on issues such as automated assembly, adaptivity, and dynamic

reconfigurability, with the overarching aim of building systems

that are able to meet global system requirements that may change

over time [8][9]. In our mind, such aims can be addressed by

adapting existing techniques from the Agent-Oriented Software

Engineering (AOSE) community, such as, multi agent
coordination and high-level negotiations for resource provision.

However, while AOSE has much potential for delivering open and

interoperable software architectures with flexible, re-configuration

capabilities, to date the take up of the approach in these domains

has been limited. We argue that the limitations of AOSE are

compounded by marked differences in the skill-sets and

backgrounds required across the micro/functional and

macro/MAS level. In particular, the emphasis of multiagent

toolkits is in enabling the coordination of large scale, deliberative

MASs, e.g. by deliberating the high-level goals of agents, while

low-level issues arising from the interaction with the application’s

functionalities are often overlooked. Crucially also, the effort in

standardizing the MAS level is not reflected in the way these

toolkits aid integration with existing systems and infrastructures.

In order to resist this trend and work toward self-configurable

distributed systems we avail of SoSAA, a software framework

that integrates both CBSE and AOSE to utilise the advances

already achieved in both domains. The integration of both AOSE

and CBSE in a same framework permits the developing of

complex MASs that needs to deal with both low level (e.g. event-
based) and high level deliberative behaviors.

SoSAA incorporates modularity by applying the principles of

hybrid control architectures to autonomous agents. Popularised by

their use in robotics (e.g. in [6]), hybrid control architectures are

layered architectures combining low-level behaviour-based

systems with high-level, deliberative/procedural reasoning

apparatus. From a control perspective, this enables the delegation

of many of the details of the agent’s control to the behaviour

system, which closely monitors the agent’s sensory-motor
apparatus without the need to employ symbolic reasoning.

The original solution implemented in the SoSAA framework is to

also apply such a hybrid integration strategy to the system’s

infrastructure, as illustrated by Fig. 1. SoSAA combines a low-

, Cite as: An Agent-Based Approach to Component Management, David
Lillis, Rem Collier, Mauro Dragone, G.M.P. O’Hare, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 529–536
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

530

level component-based infrastructure framework with a MAS-
based high-level infrastructure framework.

The low-level framework operates by imposing clear boundaries

between architectural modules (the components) and guiding the

developers in assembling these components into a system

architecture. Crucially, it then provides a computational

environment to the high-level framework, which then augments

its capabilities with its multi-agent organisation and goal-oriented

reasoning. To this end, the SoSAA adapter provides meta-level

perceptors and meta-level actuators modules, which collectively
define the interface between the two layers in SoSAA.

Such an approach facilitates the integration of different functional

elements in terms of independent agents, but crucially also avoids

an overly rigid decomposition of the system and the overuse of

symbolic interaction – two inherent risks in more traditional
agent-based architectures.

Figure 1. SoSAA’s hybrid framework strategy.

SoSAA draws inspiration from, and contains features that are

common to other systems developed by researchers in the field.

Merely making use of CBSE principles to create agent systems is

not a novel idea [1]. The use of “backchannels” is a key feature of

RETSINA [2]. The CARTAGO system makes use of the Agents

& Artifacts meta-model, utilising artifacts to provide an agent

with a consistent interface through which an agent may interact

with its environment [12]. We have previously performed a

comparison between SoSAA and prior research such as these,

which is contained in [5]. In our view, SoSAA represents a hybrid

approach that combines the flexibility of component frameworks

with the expressiveness and suitability of agent oriented

programming languages. In particular SoSAA focuses on the

exploitation of agents' goal-driven reasoning and coordination

capabilities for the augmentation of different domain- and

application-specific component-frameworks. This is achieved by

standardizing the interaction between the agent layer and the

component layer via a conceptual framework that adopts the
agreed concepts that are common to component systems.

1.1 SoSAA Component Model
Within CBSE, domain analysis is used to capture the principal

quality attributes and expresses them in form of a component

model. This typically provides an unambiguous description of the

different component types required: their features and behavioral

properties, and the set of their legitimate mutual relationships to
be supported by inter-component communication channels.

In order to serve as a general-purpose infrastructure and

integration framework, the SoSAA component model requires a

wide range of the unifying features advanced within CBSE

approaches, such as the Fractal [3] and OSGi [14] proposed

standards. Collectively, these features define a generic component

model that allows domain-specific specialisation while also

addressing the implementation of the SoSAA hybrid framework

strategy. In particular, the latter is achieved by: (i) fragmenting the

fundamental mechanisms offered by the framework, and (ii)

shaping their interface toward the SoSAA intentional layer as the

one between a specialized class and its base class in OOP. This

enables the fitting of low-level mechanisms that can be

purposefully configured and overridden by the component agents
in the intentional layer.

The following points present the requirements set by the SoSAA
component model in greater detail:

R1) Support for an extensibility set of component types

Rather than distinguishing between rigidly pre-defined component

types, SoSAA requires support for defining new component types

that capture domain- and application-specific characteristics. This

simplifies the development of specific applications by providing a

set of primitive components that are ready to be specialized by the

developer. For example, in the HOTAIR system (discussed in

Section 3), components can range from active components

encapsulating data-processing functionalities, to passive data

components granting the access to a body of data such as task and
environment-related information.

R2) Recursive component context and container-type

functionalities.

The advantage of having a component context in general is the

possibility to logically group components and to define context-

level functions for all components in one context, beginning with

their basic interface toward the component framework (e.g.

loading/unloading, life-cycle control). In addition, SoSAA

requires support for recursive components’ contexts to

hierarchically organize system components and also to provide the

access to a context-level API. While a root context provides the

main container, each component can also be a composite

component by providing its own inner context to organise inter-

component functionalities among its children. The basic context-

level API requires container-type functionalities to load, unload,

configure, and query the set of functional components loaded in

the system, together with their interface requirements (in terms of
provided and required collaborations).

R3) Support for both connection- and data-driven component

collaboration styles.

Connection-driven interfaces are essentially procedural calls

between clients and service providers. These are important to

enable high performance (time-critical) quality attributes and also

to allow well-defined synchronous collaborations yielding

guaranteed results. As such, they can also be used for

implementing behavioral coupling between components where

David Lillis, Rem Collier, Mauro Dragone, G.M.P. O’Hare • An Agent-Based Approach to Component Management

531

one component uses the services exported by another component.

In contrast, the data-driven composition style stresses the

instantiation of indirect collaboration patterns through the

transmission of either messages or events among loosely coupled

components. Both mechanisms should be supported in both

synchronous and asynchronous modalities, and with both unicast

(one-to-one) and multicast (one-to-many) routing options. In

particular, event routing needs to support prioritised dispatching

of consumable events so that an event handler situated in the

SoSAA intentional layer may override handlers registered within

the low-level framework by: (i) registering itself as a prioritised

event handler, and (ii) declaring the event consumed in order to
cancel further dispatching of the event.

R4) Brokering functionalities.

These context-level functionalities act as late-binding mechanisms

that can be used to defer inter-component associations by locating

suitable collaboration partners for each of the collaboration styles

supported by the framework. Through them, components do not

need to be statically bound at design/compilation time but can be

bound either at composition-time or at run-time in order to

dynamically configure collaboration patterns and thus help the
construction of adaptable software architectures.

R5) Binding functionalities.

Through these operations, the client-side interfaces (e.g. service

clients, event listeners, data consumers) of one component can be

programmatically bounded to server-side interfaces (e.g. service

providers, event sources, data producers) of other components.

Binding functionalities can be categorised as either explicit or

implicit binding. For the former, an external controller needs to

explicitly name the interfaces to be bound together, while in the

latter, an internal controller will be responsible for binding a given

client-side interface to any of the compatible server-side interfaces

available within the context. The exact binding style used depends

on the application-specific nature of the inter-component

collaboration. For instance, explicit binding is required in cases

where an event listener interface of one component can only

receive event notifications from the event source exported by a

specific component. For other applications, implicit binding is

essential to provide hot-swapping (dynamic replacement of

components), whereby any of the available components (e.g.

exporting a stateless service) can substitute a failed one.

1.2 Hybrid BackChannel Management
It is relatively easy to support the aforementioned features in one

single component context, as brokering and container

functionalities can avail of inter-process (e.g. memory sharing)

communication. To support system distribution over multiple

SoSAA nodes, SoSAA advocates a hybrid communication model

in the RETSINA [2] style, whereby agents can make use of

backchannels, which allow them share information amongst

themselves without the need for an Agent Communication

Language (ACL). This approach assists the integration of multiple

communication mechanisms (e.g. Tcp/Ip, RMI, CORBA, JMS) in

one system and is thus instrumental for guaranteeing its
adaptability to heterogeneous and dynamic environments.

Through its integration with a low-level component framework,

SoSAA makes it easier to ground the ACL-level backchannel

specifications in a set of operators that effectively manage the

backchannels, as SoSAA standardises the interface opened to the

agent and to its low-level components. As such, SoSAA helps to

integrate legacy systems by acting as a mediator between these

systems and the agent layer, especially when the low-level

activities already resolve some of the issues related to the

management of their backchannels. While a purely agent-based

backchannel management system requires that all backchannels

be managed (initiated/terminated) at the ACL level, sometimes it

can be easier, advantageous, or indeed the only option, to rely

upon the low-level management implemented in the component

layer directly in charge of the backchannel. For instance, the

successful initialization of a TCP/IP connection would already

inform both participating agents when the backchannel is

activated, thus rendering ACL messages such as <connection

successful> and <accepted client-line> unnecessary. The SoSAA

approach typically makes it easier to implement these exceptions,

while also enssuring that the agent will be informed of all the
backchannels, independently from their origin and history.

Figure 2 illustrates the realisation of the hybrid backchannel

management in SoSAA. Interface adapter components provide

the bridge between the standard interface classes used for inter-

process component collaboration and the backchannels used to

connect the corresponding components' interfaces across the

network. In the example depicted in Figure 3, two components are

remotely connected through a Pull data interface by interposing a

TcpPullServer, which is bound to the component exporting the

Pull server interface, and a TcpPullClient component, which is

bound to the component requiring it. Figure 3 also shows how the

backchannel is managed by component agents in the respective

nodes. In the example, whenever the client agent wants the client

component to exchange data with the server component through a

TCP/IP backchannel, it needs to, respectively: (i) load the

TcpPullClient, (ii) bind it with the client component, and (iii)
configure it by passing the address of the server’s node.

Figure 2. Example of backchannel management in SoSAA.

2. HOTAIR: Overview
To demonstrate the effectiveness and impact of using SoSAA, it is

necessary to utilise it in the development of a real, non-trivial

MAS. HOTAIR (Highly Organized Teams of Agents for

Information Retrieval), a distributed agent-based search engine, is

such a MAS, which has been built using the AFAPL2 agent

programming language [13]. The system runs within the open-

source Agent Factory framework, a modular and extensible

framework that provides comprehensive support for the

development and deployment of agent-oriented applications [4].

AFAPL2 facilitates the development of intentional agents using a

variant of the widely-used BDI architecture [11]. HOTAIR had

previously been developed using more traditional AOSE

principles, without the use of components. It was rewritten using

SoSAA so as to demonstrate the difference between the two
systems. The evaluation of this is presented in Section 4.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

532

As is common amongst Information Retrieval (IR) systems,

HOTAIR consists of two distinct subsections. The Indexing

Subsystem is charged with acquiring documents from a variety of

sources that are stored in an index, from which retrieval can occur

on the receipt of queries from users. The second subsystem, the

Querying Subsystem, has the task of accepting queries from users

and making use of an IR algorithm in order to return a list of
documents relevant to that query.

The principal focus of this paper is on the Indexing Subsystem.

The reason for this is twofold. Firstly, the two subsystems have no

contact with one another, apart from the fact that they both make

use of a shared index, and so they can be considered separately.

Secondly, the Indexing Subsystem is not dependent on the rate at

which queries arrive and so its performance can be evaluated with

minimal influence from external factors.

The Indexing Subsystem consists of three processes, through

which each document must travel sequentially, following a linear

workflow pattern. Although full discussion of the motivations

behind the choice of this specific workflow is outside the scope of

this paper, the stages contained in it are outlined as follows:

The first stage of processing each document must undergo is Data

Gathering. This is the task of identifying and downloading

documents for inclusion in the index. These may be located on

HTTP servers, file shares, local hard disks, FTP sites, DVDs or

other sources. The type of files being downloaded is unimportant

at this stage. DataGatherer agents are capable of downloading

files and storing them on the local filesystem.

Once a document has been gathered and stored locally, it must

undergo Translation. As documents may be in any number of file

formats (e.g. HTML, PDF, Microsoft Word's .doc format), it is

convenient to convert each to a common file format that is

understandable by other agents within the system. This simplifies

the process of Indexing, outlined below. A group of Translator

agents are tasked with converting documents fetched by the

Gatherers into a common XML-based file format that can be used

to represent the contents of any such downloaded file.

Indexing: The final stage of processing required is to transfer the

XML representation of the files to the searchable index, stored in

a database. This is performed by Indexer agents.

Figure 3. Indexing Subsystem Workflow

Fig. 3 displays the agents each document passes through on its

way from a data source to the index. In reality, multiple agents of

each type exist in the system. These form teams of agents that are

responsible for performing one document processing step. They

have the goal of maximizing the throughput of documents through

the system, realized by ensuring that they themselves are

continually engaged in finding documents (either from their

original sources or other agents) and processing them.

Whenever a DataGatherer agent has located and downloaded

documents, these are ready to be translated. The DataGatherer will

place these documents in an output queue, from which they can be

retrieved by Translators at a later stage. The agent advertises this

fact by broadcasting a message to the other agents in the system to

inform them of the fact that it has documents that are ready for

further processing. Translators will make use of this broadcast

information to make a decision about which DataGatherer it will

contact in order to acquire documents that they can process. Once

the translation stage has been completed, the interaction between

the Translators and the Indexers operates in a similar fashion, with

Translators broadcasting advertisements about documents that are

ready for indexing, and Indexers contacting the relevant

Translators to get these documents.

This process of Translators and Indexers automatically assigning

themselves to another agent from which they can get documents

operates on a greedy basis. Whenever an agent has the capacity to

process more documents, it will, by default, attempt to contact the

agent that had the longest output queue the last time it advertised.

This tends to reduce the likelihood of individual queues growing

unchecked as others are consumed.

2.1 Performance Management
As well as deciding for themselves where they should get

documents from, the agents are also capable of following

instructions sent from a PerformanceManager agent which may

override their default behaviour. Unlike the individual processing

agents, the PerformanceManager maintains an overall view of the

current organisation of the system. In addition to the information

broadcast about the output queues of the various agents, the

PerformanceManager will also be aware of the sources each agent

is using from which to fetch its documents.

This is useful for a number of reasons. By monitoring the size of

the output queues of a particular team of agents, the

PerformanceManager can draw conclusions about the relative

performance of that team when compared with the next team in

the workflow. If, for example, the output queues of the

DataGatherer agents are continually growing, this is an indication

that the Translators are falling behind in the rate at which they are

processing documents. Such a situation is not desirable. If the

DataGatherers continue fetching documents at their existing rate,

their output queues will only continue to grow. This will also

mean that the DataGatherers are consuming vital system resources

that perhaps would be better applied to the agent teams further

along the workflow, so as to ensure that documents will reach the

index at a faster rate overall. Documents that have been

downloaded by DataGatherers but that have not reached the index

are invisible to the Querying Subsystem and as such are useless

until they have undergone the Indexing process.

Similarly, Translators may be consuming documents at a faster

rate than they are being downloaded by the DataGatheres. In this

case, Translators continually attempting to acquire documents that

are not yet available will also use system resources that would be

better applied elsewhere. In situations such as these, the

PerformanceManager is capable of taking a number of actions to

benefit the overall performance of the system as a whole.

If the PerformanceManager believes that imbalances such as these

constitute a long-term state of affairs, it has the option of

requesting some agents in the over-populated group to terminate

themselves. The resources freed by this action can then be used

more beneficially by creating other agents as necessary. However,

terminating and creating agents are computationally costly

processes and so the PerformanceManager will seek to avoid this

unless it is certain that such action is required. If it is unsure as to

the long-term nature of a processing imbalance, it may request

agents to temporarily halt in order to free up resources (such as

CPU cycles) to enable other groups to catch up. In both of these

David Lillis, Rem Collier, Mauro Dragone, G.M.P. O’Hare • An Agent-Based Approach to Component Management

533

situations, instructions from the PerformanceManager will

override the default behaviour of the agents themselves.

In addition to balancing the performance of the agent teams so as

to facilitate the steady flow of documents through the system, the

PerformanceManager also has a role in balancing the system

across multiple platforms. As a distributed MAS, HOTAIR

facilitates the introduction of additional hardware resources. The

PerformanceManager must also balance the load across machines

to ensure that none is over-utilised while others are lying idle.

This kind of balancing can be done by controlling the platforms

on which new agents are created and also by routing documents to

particular platforms (overriding the agents' default behaviour)

when necessary to maintain or improve system performance.

2.2 Motivations for using SoSAA in HOTAIR
The existing HOTAIR system is not ideal, either from a software

development or from a performance point of view.

From a software development point of view, the principal

motivation behind the use of programming languages specifically

designed for agent programming (such as AFAPL2) is that they

aid in modeling certain features of the human cognitive process,

such as beliefs, desires, intentions, roles, plans and commitments.

However, if every action performed by an agent requires this type

of reasoning, it tends to over-complicate the development process.

As humans, there are certain menial tasks that we can undertake

without investing a significant amount of thought. Indeed we even

refer to such activities as “mindless” on a regular basis. Working

on a simple production line (as is the case with our agents) is one

such example, and so it is desirable to separate the intentional

actions from the menial tasks that are performed continually.

In the following section, we outline how we made use of the

SoSAA integration strategy to perform a separation of the

HOTAIR system into two layers. High-level functions such as

deciding on a source from which to fetch documents, responding

to and reasoning about communications received from other

agents, and the management of output queues can be kept within

the intentional layer. This continues to take advantage of the

features of the AFAPL2 agent programming language. However,

once an agent has decided to fetch documents from a particular

other agent, the process of requesting, receiving and processing

those documents can be performed repeatedly with minimal

cognitive input. Therefore, these low-level, menial tasks are

passed into the component layer, greatly simplifying the task of

programming the essential intentional elements of each agent.

From a system performance point of view, inter-agent

communication using Agent Communication Languages (ACLs)

is a computationally expensive process [2]. In the existing

HOTAIR system, all communication between agents is done

using FIPA-ACL [10]. However, the introduction of components

into the system allows the use of backchannels to facilitate

communication between similar types of component.

Additionally, components can continue their tasks of processing

documents while potentially lengthy deliberation is being

performed in the intentional layer.

3. Implementation
Microsoft’s COM+ and Common Language Runtime (CLR) for

the .NET platform, Sun’s Java language, RMI, J2EE platform and

Enterprise JavaBeans (EJB), are some of the candidate

technologies to implement the SoSAA low-level component

framework. However, rather than being component frameworks in

their own right, these constitute component-enabling technologies

that can be used to create domain specific frameworks. Also, the

majority of these initiatives are biased toward business-related

domains. They usually facilitate the design of multi-tier enterprise

systems but provide only limited support for extension and

adaptation. A notable exception in the CBSE area is the Fractal

component model [3]. Specifically, Fractal introduces the notion

of a component endowed with an open set of control capabilities.

These are not fixed in the model but can be extended and adapted
to fit the programmer's constraints and objectives.

A similar approach is adopted in the JMCF (Java Modular

Component Framework), the component framework developed in

conjuction with SoSAA for use across different computational

environments, including resource constrained devices such as

sensors and mobile phones. JMCF (illustrated in Fig. 4) is

organized in a core package, which describes the framework in the

form of a set of abstract interfaces, and in an implementation

package. The latter includes common abstract implementation of

the framework’s classes as well as their domain/application- and
environment--specific specialisations.

Abstract implementations of components in JMCF serve the

purpose of defining Component Type classes that fix both the

types and the implementation of components' features. The other

responsibility of component type classes in JMCF is to manage

the relationships with framework-type components. These are

components offering framework-wide services, such as

scheduling/control-injection, logging and event-dispatching,

which can be used by the functional components defined at the
application level.

Figure 4. JMCF Class diagram.

Once an application’s components extend a specific component

type, they automatically inherit the framework mechanisms and

the features supported by that component type. They are then left

to declare, respectively: (i) the component’s name, and (ii) the

component’s specific interfaces. For the latter, the component

needs to override the getInterfacesInfo method of the IComponent

interface. This method returns a list of InterfaceInfo objects, each

reporting, respectively: (i) the name of the interface, (ii) the

interface’s collaboration style (SERVICE, DATA, EVENT), (iii)

the interface’s class (specifying either the interface implemented

by the service, the type of the data, or the interface defining the

source of a particular event), (iv) the interface’s direction

(required/client vs. provided/server), and (v) the interface’s

implementation (an object implementing the client or the server

side of the inter-component collaboration). The component’s

context is responsible for the brokering and the implicit binding of

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

534

components’ client interfaces to suitable providers within the

same context. Furthermore, in the absence of required providers

within the context of the requesting component, and only if this

context is not the root context, the search of a provider is extended
to the context of the parent component.

JMCF comes with a package (jmcf.impl) of built-in component

types and base-class implementations of the framework’s

component context class, including versions based on JavaBeans
technology and a lightweight Java 1.1 compatible implementation.

3.1 The SoSAA Adapter
The SoSAA Adaptor acts as abridge between the low-level

component framework and the higher-level AOP language. In the

context of Agent Factory, this support is implemented through a

combination of: a platform service, an agent module, a set of

actuators and perceptors and a partial agent program that links

together all the pieces and provides a basis for developing SoSAA

agents. Specifically, the platform service, encapsulates the

underlying component framework, and provides an interface

through which that framework may be manipulated, including

loading/unloading, activation/deactivation, binding, inspection,
monitoring, and configuration of components.

ONTOLOGY sossa {
 PREDICATE activated(?cName);
 PREDICATE deactivated(?cName);
 PREDICATE focusingOn(?cName, ?type);
 PREDICATE property(?cName, ?prop, ?val);
 PREDICATE event(?cName, ?details);
 PREDICATE created(?cName);
 PREDICATE removed(?cName);
 PREDICATE component(?cName);
 PREDICATE bound(?interface1, ?interface2);
 PREDICATE clientInterface(?cName,?int,?type,?class,…);
 PREDICATE serverInterface(?cName,?int,?type,?class);
}

PERCEPTOR sosaaEventMonitor { ... }
ACTION create(?id, ?type) { ... }
ACTION remove(?id) { ... }
ACTION bind(?id1, ?iface1, ?id2, ?iface2) { ... }
ACTION configure(?id, ?param, ?value) { ... }
ACTION activate(?id) { ... }
ACTION deactivate(?id) { ... }
ACTION focus(?id) { ... }
ACTION lookup(?id) { ... }

LOAD_MODULE sosaa sosaa.module.ComponentStore;

Fig 5: Outline of the current version of the SosaaAgent.afapl2 file

Access to these operations is supported through the provision of a

set of actuator units. Fig. 5 below illustrates their declaration as

part of a partial AFAPL2 agent program that can be reused as a

basic for creating SoSAA agents. As can be seen in this figure,

this partial agent program also makes use of an agent module.

Agent modules are provided by AFAPL2 to support the creation

of resources that are private to a given agent. In this case, the

module provides a mechanism for the agent to keep track of the

components that it is interested in, and also a way of accessing the

events and properties that are generated by those components. To

achieve this, the sosaaEventMonitor perceptor has been

created. This perceptor converts both events and properties into

beliefs that can be used at the agent-level. It supports both basic
beliefs and transformers, which generate custom beliefs.

To create a SoSAA agent, you simply import the above AFAPL2

program into your own agent program and then write your own

code, using the SoSAA support where relevant. Additionally, the

SoSAAService platform service must also be specified within the

corresponding platform configuration file. Your AFAPL2

program must then explicitly bind to that service as is illustrated
below in Fig. 6 (here it uses the service id, af.service.sosaa).

In this example, DataGatherer and DataQueue are Java classes

that implement JMCF components that are able to process

document collections and provide a queue respectively. Both

classes are located within the default package (otherwise their

fully qualified class name must be used). After these components

are created, they are bound together so that the output interface of

the DataGatherer is wired to the input interface of the DataQueue

(the DataGatherer pushes new document bundles onto the queue).

Finally, the agent focuses on both components, allowing it to be
aware of their state and to capture any events that they raise.

The the source and the documentation of JMCF and AF ca be
downloaded from http://www.agentfactory.com.

IMPORT sosaa.agent.SosaaAgent;
IMPORT com.agentfactory.afapl2.core.agent.BasicAgent;

COMMIT(?self, ?now, BELIEF(true),
 PAR(bindToService(af.service.sosaa),
 createHOTAIRComponent(?self, DataGatherer)
)

);

PLAN createHOTAIRComponent(?name, ?type) {
 PRECONDITION BELIEF(true);
 POSTCONDITION BELIEF(true);

 BODY PAR(create(?name, ?type),
 specifyDataQueue(?name),

 DO_WHEN(BELIEF(dataQueueName(?qName)),
 SEQ(create(?qName, DataQueue),
 PAR(bind(?name, output, ?qName, input),
 focus(?name),

 focus(?qName)

)

)

)

);

}

Fig 6: Part of the HOTAIR application code that specifies a plan

for creating a set of HOTAIR components, in this case a
DataGatherer component and a DataQueue component.

4. Evaluation
To quantify the effects of introducing the SoSAA layer into

HOTAIR, a number of experiments were conducted. The focus of

these experiments was on the affect on system throughput
associated with moving to a hybrid MAS/CBSE system.

4.1 Setup
Comparisons were made between two systems. The first is the

original HOTAIR system without a component layer being

utilized, as outlined in Section 3. In the following discussion, we

refer to this system as “HOTAIR”. The second is the updated

version of HOTAIR in which the SoSAA component layer has

been added to take care of low-level behaviors. This system is
referred to as “HOTAIR/SoSAA”.

It is important to note that moving these functions to the

component layer is the only difference between the two systems.

The algorithms that decide from where agents get the documents

to process, and the strategies used by the PerformanceManager

remain the same for both systems. Thus, these will not have any
effect on the relative performance of the two systems.

David Lillis, Rem Collier, Mauro Dragone, G.M.P. O’Hare • An Agent-Based Approach to Component Management

535

Each system was seeded with two DataGatherers, each of which

accessed a standard static IR dataset. The datasets used were the

Cranfield corpus and the WT2G corpus from the TREC Web

Track [7]. The principal motivation behind using static datasets

(as opposed to gathering documents from the web, for example)

was to ensure that the experimental results would not be

influenced by volatile external factors such as network throughput
or the response time of third party web servers.

Each system was initially run on a single machine, ceasing once

3,000 documents had been successfully indexed. This was done

three times in order to reduce the influence of outliers. The results

presented below use the average performance for these three runs.

This process was then repeated for two, three and four machines.

For these experiments with multiple machines, the Indexer agents
add documents to a single searchable index.

4.2 Results
The results of our experiments are laid out in Fig. 7. This displays

the results the experiments outlined above using both HOTAIR

and HOTAIR/SoSAA. The principal result observed is that the

time taken by HOTAIR/SoSAA to index 5.000 documents

substantially less than for HOTAIR and that this result is

consistent for all of the experiments runs. This improvement is

most pronounced when the systems were run on a single platform,

with HOTAIR/SoSAA using 44.48% of the time required by

HOTAIR to perform the same task. Even in the case where there

was the least performance improvement, namely for two

platforms, the throughput of HOTAIR/SoSAA was still almost

double that of HOTAIR (taking 54.15% of the time taken by

HOTAIR). This result supports the assertion made in [2] that the

widespread use of ACL messages to support every aspect of agent

behavior is inefficient and that using backchannels to co-ordinate
low-level functionality can boost a system's performance.

Despite the performance of HOTAIR/SoSAA being substantially

superior to HOTAIR in all cases, it is interesting to note that in

moving from one machine to two, the performance of

HOTAIR/SoSAA actually declines slightly, whereas the

performance of HOTAIR improves, as one would expect. The

explanation for this is to be found in examining the methods of

communication used by each system when running on a single

host and on multiple hosts.

Running across multiple hosts introduces network overhead as an

obstacle to efficient performance. With the HOTAIR system, each

time a message is passed, it must be converted to an ACL and

subsequently parsed on receipt. Whether local or distributed, a

Message Transport Service must be present on the agent platform.

The destination of the message will dictate the type of service to

use, so when the system is distributed, a Local Message Transport

Service is replaced with a HTTP Message Transport Service. In

contrast, when HOTAIR/SoSAA is run on a single host, a

component such as a Translator binding to the output queue

component of a DataGatherer means that it can fetch the next

documents for processing by means of a simple method

invocation, which is extremely efficient. For a distributed system

however, additional components are introduced at both ends of the

communication: a TcpPullServer on one end and a TcpPullClient

at the other. Thus, the efficiencies that are in place to aid the

performance of single-host systems result in the situation where

the distribution to multiple hosts causes extra overheads in

addition to that of the network to be brought into the system.

Despite this, it is noteworthy that the performance of

HOTAIR/SoSAA is still vastly superior to that of HOTAIR and

also that these extra overheads begin to be overcome with the

addition of the third host, which results in performance superior to
the single-host incarnation of the system.

Another notable result is an unexpected increase in processing

time caused by moving from three platforms to four. It is

important to note that this deterioration is observed for both

systems to similar degrees (a 5% increase in processing time for

HOTAIR, compared with an 8% rise for HOTAIR/SoSAA).

Fig. 7: Graphs plotting results of comparison between HOTAIR and HOTAIR/SOSAA over 1, 2, 3 and 4
machines respectively.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

536

Because of this, we do not attribute this deterioration to

shortcomings in the SoSAA implementation or integration.

Rather, the PerformanceManager was observed to make decisions

that did not adequately exploit the additional resources made

available to it (e.g. by not creating a sufficient number of new

agents to take advantage of the extra machine). Though an

interesting and somewhat unwelcome result, this does not

undermine the results presented. The suboptimal management

agent was common to both systems and as such does not have a

bearing on system performance in the comparative sense. For the

experiment run with four machines, the SoSAA-enabled version

of the system is still processing documents at approximately
double the rate of the original HOTAIR system.

5. Conclusions and Future Work
In this paper, we have introduced the recently proposed SoSAA

conceptual framework and its current instantiation, which

combines JMCF for the component level, and Agent Factory /

AFAPL2 for the agent level. Further, we have outlined the

HOTAIR testbed, a distributed agent-based search engine which

was developed previously using AF alone. We have used

HOTAIR to evaluate our implementation of SoSAA through the

creation of a SoSAA-based version of HOTAIR. In developing

this new HOTAIR, we have simply replaced the underlying

functional core of HOTAIR with new SoSAA components that
are then managed by the re-factored AFAPL2 agents.

From a development perspective, the advantages have been:

• A clearer and cleaner separation of concerns between the

underlying functionality and the agent-layer coordination

mechanisms (i.e. job assignment / group management) that
has improved the readability of the code base.

• The replacement of ad-hoc thread management for the

underlying functionality with a more managed approach that
is handled by the component framework.

• The introduction of backchannels as a mechanism for

efficiently handling the transmission of job information
between agents.

These benefits have led to a more efficient implementation of

HOTAIR that easily outperforms the previous version, without

considering any potential optimizations that could arise.

Additionally, it showcases how a simple component-based

framework can be enhanced through its integration with a multi

agent system. This has resulted in symbiotic relationship – on the

one hand, HOTAIR without components is difficult to understand

and slow, and on the other hand, HOTAIR could not have been

implemented with JMCF components alone because they lack

reasoning and coordination capabilities. This highlights the need

for frameworks such as SoSAA that provide a standardized
approach to integrating CBSE and AOSE.

Future work will investigate how to inject failures to measure

fault tolerance and test the hybrid backchannel management by

activating different interface adapter components, e.g. replacing

JMS with TCP-IP if the JMS provider seems to have failed.

References

[1] Amor, M., Fuentes, L., Mandow, L. and Troya, J.M.

Building Software Agents from Software Components.

Current Topics in Artificial Intelligence, LNAI, Springer,
2004.

[2] Berna-Koes, M., Nourbakhsh, I. And Sycara, K.

Communication Efficiency in Multi-Agent Systems. In

Proceedings of the 2004 IEEE International Conference on
Robotics & Automation, New Orleans, LA, 2004.

[3] Bruneton, E. T. et al., The Fractal Component Model and Its

Support in Java. Software Practice and Experience, special

issue on Experiences with Auto-adaptive and Reconfigurable

Systems. 36(11-12), 2006.

[4] Collier, R.W. et al., Beyond Prototyping in the Valley of the

Agents, in Multi-Agent Systems and Applications III,

Lecture Notes in Computer Science (LNCS 2691), Springer-
Verlag

[5] Dragone, M., Lillis, D., R., Collier, R.W., and O’Hare, G. M.

P., SoSAA: A Framework for Integrating Agents &

Components, Proceedings of the 24th Annual Symposium on

Applied Computing (ACM SAC 2009), Special Track on

Agent-Oriented Programming, Systems, Languages, and
Applications, Honolulu, Hawaii, USA, March 8 - 12, 2009.

[6] Gat, E., ATLANTIS: Integrating planning and reacting in a

heterogeneous asynchronous architecture for controlling real-

world mobile robots. In Proceedings of the Tenth National

Conference on Artificial Intelligence (AAAI-92). pp. 809-
815, 1992.

[7] Hawking, D., Voorhees, E., Craswell, N., and Bailey, P.

Overview of the TREC-8 web track.

In E.M. Voorhees and D.K. Harman, editors, Proceedings of

the Eighth Text REtrieval Conference (TREC-8), pages 131-

150. NIST Special Publication 500-246, 2000.

[8] Ke Chen, W., Hiltunen, M., Schlichting, R., Constructing

Adaptive Software in Distributed Systems. 21st IEEE

International Conference on Distributed Computing Systems
(ICDCS'01), 2001.

[9] Kramer, J. and Magee, J. Self-Managed Systems: an

Architectural Challenge. In 2007 Future of Software

Engineering (May 23 - 25, 2007). International Conference

on Software Engineering. IEEE Computer Society,
Washington, DC, 259-268., 2007.

[10] Labrou, Y., Finin, T. and Peng, Y., Agent Communication

Languages: The Current Landscape, IEEE Intelligent
Systems, vol. 14, no. 2, pp. 45-52, Mar./Apr. 1999.

[11] Rao, A.S., and Georgeff, M.P., BDI Agents: From Theory to

Practice, Proceedings of the First International Conference
on Multi Agent Systems (ICMAS-95). pp 312-319, 1995.

[12] Ricci, A., Piunti, M., Acay, L.D., Bordini, R., Hübner, J. and

Dastani, M. Integrating Artifact-Based Environments with

Heterogeneous Agent-Programming Platforms. In

International Joint Conference on Agents and Multi Agent
Systems (AAMAS08) Estoril, Portugal, 2008.

[13] Ross, R, Collier, R, O Hare, G.M.P. AF-APL: Bridging

principles & practices in agent oriented languages. In

Proceedings of the Second International Workshop on

Programming Multiagent Systems Languages and tools

(PROMAS 2004). Held at AAMAS 04, New York, USA,
2004.

[14] http://www.osgi.org/

[15] Szyperski, C., Component Software: Beyond Object–
Oriented Programming. Addison-Wesley, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

